Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans.
نویسندگان
چکیده
SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) are widely accepted to drive all intracellular membrane fusion events. SM (Sec1/Munc18-like) proteins bind to SNAREs and this interaction may underlie their ubiquitous requirement for efficient membrane fusion. SM proteins bind to SNAREs in at least three modes: (i) to a closed conformation of syntaxin; (ii) to the syntaxin N-terminus; and (iii) to the assembled SNARE complex. Munc18-1 exhibits all three binding modes and recent in vitro reconstitution assays suggest that its interaction with the syntaxin N-terminus is essential for neuronal SNARE complex binding and efficient membrane fusion. To investigate the physiological relevance of these binding modes, we studied the UNC-18/UNC-64 SM/SNARE pair, which is essential for neuronal exocytosis in Caenorhabditis elegans. Mutations in the N-terminus of UNC-64 strongly inhibited binding to UNC-18, as did mutations targeting closed conformation binding. Complementary mutations in UNC-18 designed to selectively impair binding to either closed syntaxin or its N-terminus produced a similarly strong inhibition of UNC-64 binding. Therefore high-affinity UNC18/UNC-64 interaction in vitro involves both binding modes. To determine the physiological relevance of each mode, unc-18-null mutant worms were transformed with wild-type or mutant unc-18 constructs. The UNC-18(R39C) construct, that is defective in closed syntaxin binding, fully rescued the locomotion defects of the unc-18 mutant. In contrast, the UNC-18(F113R) construct, that is defective in binding to the N-terminus of UNC-64, provided no rescue. These results suggest that binding of UNC-18 to closed syntaxin is dispensable for membrane fusion, whereas interaction with the syntaxin N-terminus is essential for neuronal exocytosis in vivo.
منابع مشابه
Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin.
unc-13 mutants in Caenorhabditis elegans are characterized by a severe deficit in neurotransmitter release. Their phenotype is similar to that of the C. elegans unc-18 mutation, which is thought to affect synaptic vesicle docking to the active zone. This suggests a crucial role for the unc-13 gene product in the mediation or regulation of synaptic vesicle exocytosis. Munc13-1 is one of three cl...
متن کاملUNC-18 promotes both the anterograde trafficking and synaptic function of syntaxin.
The SM protein UNC-18 has been proposed to regulate several aspects of secretion, including synaptic vesicle docking, priming, and fusion. Here, we show that UNC-18 has a chaperone function in neurons, promoting anterograde transport of the plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein Syntaxin-1. In unc-18 mutants, UNC-64 (Caenorhabditis ...
متن کاملRegulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13.
The Caenorhabditis elegans unc-13, unc-18, and unc-64 genes are required for normal synaptic transmission. The UNC-18 protein binds to the unc-64 gene product C. elegans syntaxin (Ce syntaxin). However, it is not clear how this protein complex is regulated. We show that UNC-13 transiently interacts with the UNC-18-Ce syntaxin complex, resulting in rapid displacement of UNC-18 from the complex. ...
متن کاملA murine neural-specific homolog corrects cholinergic defects in Caenorhabditis elegans unc-18 mutants.
Caenorhabditis elegans UNC-18 protein, homologous to yeast Sec1p, is important in neurotransmitter release, because the unc-18 mutation leads to severe paralysis and presynaptic acetylcholine (ACh) accumulation. To examine the functional conservation in mammals, we tried to isolate unc-18 isoforms from mouse and human brain cDNA libraries and obtained two classes of isoforms-neural genes and ub...
متن کاملStructure-Function Study of Mammalian Munc18-1 and C. elegans UNC-18 Implicates Domain 3b in the Regulation of Exocytosis
Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 418 1 شماره
صفحات -
تاریخ انتشار 2009